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Abstract: Property closures are envelopes representing the complete set of theoretically
feasible macroscopic property combinations for a given material system. In this paper, we
present a computational procedure based on fast Fourier transforms (FFTs) to delineation of
elastic property closures for hexagonal close packed (HCP) metals. The procedure consists of
building a database of non-zero Fourier transforms for each component of the elastic stiffness
tensor, calculating the Fourier transforms of orientation distribution functions (ODFs), and
calculating the ODF-to-elastic property bounds in the Fourier space. In earlier studies, HCP
closures were computed using the generalized spherical harmonics (GSH) representation
and an assumption of orthotropic sample symmetry; here, the FFT approach allowed us
to successfully calculate the closures for a range of HCP metals without invoking any
sample symmetry assumption. The methodology presented here facilitates for the first time
computation of property closures involving normal-shear coupling stiffness coefficients.
We found that the representation of these property linkages using FFTs need more terms
compared to GSH representations. However, the use of FFT representations reduces the
computational time involved in producing the property closures due to the use of fast FFT
algorithms. Moreover, FFT algorithms are readily available as opposed to GSH codes.
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1. Introduction

Property closures are defined as the complete set of the single-crystal and polycrystalline
homogenized anisotropic property combinations for a given material. These constructs are important
for microstructure based material design. Within the applied mathematics community, the property
closures are referred to as the G-closures. In the past, the G-closures have been calculated for
properties such as effective conductivity and elastic stiffness for a limited set of two-dimensional
microstructures comprised of isotropic phases [1–4]. More recently, a mathematical framework called
microstructure sensitive design (MSD) has been conceived to treat microstructure as a continuous design
variable in engineering design and optimization. MSD features invertible or bi-directional linkages
between the statistical description of a microstructure and its effective properties [5,6]. These linkages
facilitate the identification of microstructures satisfying targeted properties and component performance
criteria through the use of the spectral representation of microstructure and material properties. This
representation of microstructure facilitates building a space of all theoretically feasible microstructures.
When statistical orientation distribution functions (ODFs) are the descriptor of microstructure, the
complete set of theoretically feasible ODFs is called a texture hull [5–9] and can be quantitatively
described by Fourier coefficients in the multidimensional Fourier space. Mapping the hull into a space
of material properties using appropriate ODF-to-property relationships defines the property closures.

In prior work, the spectral representation necessary for MSD was implemented most commonly with
generalized spherical harmonics (GSH) basis functions [10]. The GSH bases offer the most compact
representations for describing the dependence of anisotropic material properties on crystal orientation
because they can be customized to reflect the crystal symmetry as well as the sample symmetry [10,11].
These bases were used to delineate a number of property closures for both cubic and hexagonal metals
including combinations of the elastic [7,12–14] and plastic [15,16] properties as well as calculations of
functional properties [17]. The elastic-plastic property closures presented in these works were based on
the first-order bounding theories [18–20]. To calculate the bounds of properties, material databases of
microstructure invariant Fourier coefficients have to be built. With the databases, calculation of property
bounds reduces to multiplication of the spectral coefficients for properties and those for texture (a point
in the texture hull) and their summation. These calculations are essentially instantaneous, which is highly
desirable for the fast computation of property closures and microstructure based material design. After
calculating bounds for selected property combinations of interest by mapping the hull into property
space, the problem at hand is to find textures corresponding to the boundary points of the property
closure. To this end, several computational methodologies were formulated [5,12,21,22]. In the core
of these methodologies is an appropriately formulated optimization procedure aimed at finding textures
corresponding to the boundary points of the property closure. Interestingly, for all cubic metals, textures
at the boundary points of the property closures correspond to the same set of textures [13].

Several examples exist in the current literature on using property closures to theoretically design
and optimize microstructure to improve performances of components. These examples identified
microstructures and associated properties maximizing the deflection in a compliant beam [5], the energy
storage of a flywheel [23], and the in-plane load carrying capacity of a thin plate with a central
circular hole [6] and minimizing the elastic driving force for crack extension in rotating disks [24]
and internally pressurized thin-walled vessels [25]. The main microstructural feature governing the
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elastic and plastic properties in these studies has been the ODF, although in MSD, some limited
consideration has been given to compositional variations in microstructures [26] and to fiber reinforced
composites [9,27]. A design strategy termed the topology optimization has been successful in designing
composites of extreme functional and mechanical properties [28–31].

In crystal plasticity [32–48], calculations of average Taylor factors and Mandel spins for all possible
strain modes have also been accomplished using the GSH bases [49]. In addition, the GSH bases were
used to build databases of precomputed crystal plasticity solutions for the stress, strain hardening and
texture evolution function for cubic metals [50,51]. Evaluation of these functions reduced to multiplying
the orientation invariant spectral coefficient with the orientation dependent GSH basis and summing
as opposed to iteratively solving them using Newton’s solvers was found to accelerate crystal plasticity
models. Recently, in place of the GSH representations, fast Fourier Transforms (FFTs) have been used in
the ODF representation [52] as well as the crystal plasticity framework [16,53–58]. The main motivation
for using FFTs is the availability of much more computationally efficient algorithms than those using
GSH coefficients. The methods based on GSH are significantly less effective when applied to lower
symmetry metals because the relevant number of dimensions in the Fourier space is considerably higher
than that for cubic metals [7]. Additionally, FFT libraries are readily accessible while GSH codes are
not as easily found. Delineation of property closures for cubic metals using FFTs has recently been
accomplished [52].

In this paper, we have successfully formulated a new approach using FFTs to compute elastic property
closures for HCP polycrystals. To this end, we have built a database of the orientation invariant
Fourier transforms for components of the elastic stiffness and developed an optimization scheme for
finding the boundary points of the convex property envelopes. This new approach is introduced in
this paper and demonstrated with examples. The selected materials for this study were titanium,
zinc, zirconium, beryllium, magnesium, and cobalt. These materials were chosen to validate the FFT
based closures against reported property closures based on the GSH representation for orthotropic
HCP metals [7]. It was shown that the closures obtained using the FFT representation are identical
to those based on the GSH representation for the orthotropic terms of the stiffness tensor. The FFT
representation allows delineation of first-order closures of elastic properties involving the normal–shear
coupling stiffness/compliance tensor components. Although polycrystalline elastic properties were
calculated from a given texture in the most general formalism of triclinic sample symmetry using the
Voigt-Reuss-Hill approximation [11], this is the first report of this type of closures for HCP metals.
Finally, we have shown that it is possible to build texture hulls using FFTs for HCP polycrystals.

2. Representation of ODF Using FFTs and Texture Hulls for HCP Metals

The Orientation Distribution Function (ODF), f pgq, is the probability density associated with the
occurrence of the crystallographic orientation, g, in the sample of a polycrystalline material. An ODF
can be mathematically expressed in its continuous or discrete form. While the former is required for the
GSH representation, the latter is necessary for the FFT representation. In its discrete form, an ODF is
expressed as [59]:

fb∆g “
Ng˘∆g{2

N
,
ÿ

bPFZ
fb∆g “ 1 (1)
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where N is the total number of orientations in the sample; Ng ˘ ∆g{2 is the number of orientations that lie
within a bin ∆g centered about g. FZ and b will be defined shortly. The orientation, g, can be described
using an ordered set of three Bunge-Euler rotation angles pφ1,Φ, φ2q that bring into coincidence the
crystal axis with the sample reference frame. The Bunge-Euler representation was employed because of
the inherent periodicity of the space when defined as pφ1 P r0, 2πq , Φ P r0, 2πq , φ2 P r0, 2πqq. On this
domain, any function of crystal orientations is guaranteed to be periodic and circumvent the Gibbs
phenomenon [60], eliminating the need for additional high frequency terms in the FFT representations.
The Bunge-Euler space is defined by the rotation angles that make their appearance in structure-property
relationships of interest in the form of integer powers of sines and cosines of the rotation angles.
The main disadvantages of the Bunge-Euler space are the numerous redundancies in the representation
of crystal orientations (i.e., several locations in this space may correspond to a single crystal orientation)
and the inherent distortion caused by the fact that the invariant measure in this space is proportional to
∆g “ sinΦ∆φ1∆Φ∆φ2 [10]. In spite of the disadvantages of the Bunge-Euler space, the development
of the spectral representations has been most successful for this space, largely because of the implicit
periodicity in the material property functions of interest when defined in this space.

Knowing the function values on a uniform grid, FFTs can be computed [61–65]. In order to represent
the ODF using FFTs, we sample the Bunge-Euler space using this grid, which defines the bins. The FFT
representation of an ODF is expressed as:

fb1,b2,b3 “
1

B1B2B3

B1´ 1
ÿ

k1“0

B2´ 1
ÿ

k2“0

B3´ 1
ÿ

k3“0

Fk1k2k3e
2πib1k1

B1 e
2πib2k2

B2 e
2πib3k3

B3 (2)

where fb1,b2,b3 denotes the value of the ODF at the grid point identified by b, and b1, b2, and b3 enumerate
points within uniformly discretized domain; Fk1k2k3 are the FFTs of the ODF indexed by k, while k1,
k2, and k3 are the indices of the FFTs; and B1, B2, and B3 are the total number of grid points in
the periodic domain. Since the values of the ODF are the real half of the transforms, the other half
are complex conjugates i.e., Fk1,k2,k3 “ F ˚B1´ k1,B2´ k2,B3´ k3

. The superscript, *, denotes the complex
conjugate transforms.

For simplicity of notation, Equation (2) will be expressed in a shortened notation as:

fb “
1

B

B´ 1
ÿ

k“0

Fke
2πibk

B . (3)

The shortened notation will be used hereafter. For given values of the ODF on the grid over B, the
FFTs are:

Fk “

B´ 1
ÿ

k“0

fbe
´ 2πibk

B
. (4)

Computing the ODF transforms using the FFT methods was over two orders of magnitude faster
compared to that obtained using the GSH methods. Benefits of the FFT method over the GSH method
increase with the number of ODFs considered in the calculations of property closures because the
computational time involved in ODF-to-elastic property calculations scales linearly with the number
of ODFs.

Due to hexagonal crystal symmetry, there are 24 physically indistinctive orientations over the
discretized Bunge-Euler space defined above, B. FZ is the fundamental zone within B containing the
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complete set of all physically distinct orientations that can occur in the sample. These redundancies
within B can be exploited in the computations. To this end, we calculate function values in FZ and
translate these throughout the rest of the space B while preserving the uniform grid. The translations are
done as follows. For crystals of any symmetry, the definitions of the Bunge-Euler angles require that
locations pφ1 ` π, 2π´ Φ, φ2 ` πq correspond to the exact same crystal lattice orientation. Table 1
shows twelve equivalent crystal orientations within the rotational point symmetry group associated with
HCP crystals.

Table 1. Twelve symmetry operations within hexagonal close packed (HCP) rotational point
symmetry group.

Symmetries 1–4 Symmetries 5–8 Symmetries 9–12

pφ1,Φ, φ2q
`

φ1,Φ, φ2 `
π
3

˘ `

φ1,Φ, φ2 `
2π
3

˘

pφ1,Φ, φ2 ` πq
`

φ1,Φ, φ2 `
4π
3

˘ `

φ1,Φ, φ2 `
5π
3

˘

pφ1,Φ` π, φ2q
`

φ1,Φ` π, φ2 `
π
3

˘ `

φ1,Φ` π, φ2 `
2π
3

˘

pφ1,Φ` π, φ2 ` πq
`

φ1,Φ` π, φ2 `
4π
3

˘ `

φ1,Φ` π, φ2 `
5π
3

˘

As a result of all of the considerations described above, the FZ space for HCP is
FZ “

 

g “ pφ1,Φ, φ2q
ˇ

ˇ 0 ď φ1 ď 2π, 0 ď Φ ď π
2
, 0 ď φ2 ď

π
3

(

. Values of any desired function can
be calculated on a uniform grid in FZ and subsequently extended over the entire periodic space using the
above defined equivalencies preserving the uniform grid over B.

It should be noted that the smallest space defined earlier for cubic metals was defined as FZ3 [52],
which is three times the actual FZ for cubic crystals. The reason for using FZ3 instead of FZ is that a
uniform grid is only possible in FZ3. FZ upon being subjected to three-fold <111> symmetry operation,
does not result in a uniform grid that can be used to fill out the remainder of the B space [8]. Therefore,
the values of all desired functions on a uniform grid span the FZ3 space for cubic crystals while they
conveniently span the FZ domain for HCP crystals.

The FFT representation allows defining the texture hull for HCP crystals. Let F n
k define the FFTs

of single crystals that lie within FZ, which are computed using Equation (4). Let N enumerate the
single crystals that are distributed over in FZ. It is then possible to define a convex and compact texture
hull [5] as:

M “

#

Fk | Fk “

N
ÿ

n“1

αnF
n
k , αn ě 0,

N
ÿ

n“1

αn “ 1

+

(5)

As mentioned earlier, M represents the complete set of all theoretically feasible ODFs including all
of their linear combinations. M is defined in n-dimensional FFT space, where the number of dimensions
in this space is equal to the discretization B. Selected projections of M are presented in Figure 1. The
FFT based hulls are analogous to those presented previously using the GSH representations [7]. In the
next section, we describe the methodology for mapping the texture hull in the material property space
and construction of HCP property closures.
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Figure 1. Examples of the fast Fourier transforms (FFT) texture hull for HCP-triclinic
materials. Two arbitrarily selected normalized projections are: (a) ReF004, ImF004, ImF041

and (b) ReF444, F200, ImF444.

3. Property Closures

In previous work [7], it was demonstrated that a spectral approach based on the GSH basis can be
used to construct property closures for HCP metals. Here, we show that the elastic property closures
can be computed much more efficiently using the more readily accessible FFT representation. The
primary focus here continues to be on the crystallographic texture in the sample as primary description
of the microstructure. All of the closures reported in prior studies on HCP employed the orthotropic
GSH functions, which implies orthotropic sample symmetry. The closures presented here using the FFT
representations circumvent this symmetry assumption.

3.1. Elastic Stiffness for HCP Metals

The components of the stiffness tensor for an HCP single crystal as a function of the local crystal
orientation and the five fundamental elastic constantsC11, C12, C13, C33, andC44 expressed in the sample
frame are:

Cabcd “ C12δabδcd ` C44 pδadδbc ` δacδbdq

` pC11 ´ C12 ´ 2C44q

ˆ

3
ř

t“1

gatgbtgctgdt

` 1
2
pga1gb2gc1gd2 ` ga1gb2gc2gd1 ` ga2gb1gc1gd2 ` ga2gb1gc2gd1q

˙

` pC13 ´ C12q
2
ř

t“1

pgatgbtgc3gd3 ` ga3gb3gctgdtq ` pC33 ´ C11q ga3gb3gc3gd3

(6)

where δab represents the Kronecker symbol and gab is:

gab “

»

—

–

cosφ1 cosφ2 ´ sinφ1 cos Φ sinφ2 ´ cosφ1 sinφ2 ´ sinφ1 cos Φ sinφ2 sinφ1 sin Φ

sinφ1 cosφ2 ` cosφ1 cos Φ sinφ2 ´ sinφ1 sinφ2 ` cosφ1 cos Φ cosφ2 ´ cosφ1 sin Φ

sin Φ sinφ2 sin Φ cosφ2 cos Φ

fi

ffi

fl

(7)

We use bold letters to denote tensors. It is convenient to separate the orientation dependence of the
tensor [7] as:

A pgq “ Aabcd pgq “
3
ř

t“1

gatgbtgctgdt `
1
2
pga1gb2gc1gd2

`ga1gb2gc2gd1 ` ga2gb1gc1gd2 ` ga2gb1gc2gd1q

(8a)
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B pgq “ Babcd pgq “
2
ÿ

t“1

pgatgbtgc3gd3 ` ga3gb3gctgdtq (8b)

D pgq “ Dabcd pgq “ ga3gb3gc3gd3 (8c)

Equation (6) then becomes:

C “ C12δabδcd `C44 pδadδbc ` δacδbdq ` pC11 ´ C12 ´ 2C44qA pgq

` pC13 ´ C12qB pgq ` pC33 ´ C11qD pgq
(9)

3.2. Representation of the Elastic Stiffness for HCP Metals Using FFTs

Orientation dependent functionsAabcd pgq, Babcd pgq, andDabcd pgq can be evaluated on a uniform grid
over B and represented using FFTs as:

rPA
k “

ÿB´ 1

k“0
AbsinΦe´

2πibk
B , rPB

k “
ÿB´ 1

k“0
BbsinΦe´

2πibk
B , rPD

k “
ÿB´ 1

k“0
DbsinΦe´

2πibk
B (10)

To evaluate the property transforms, we had to evaluate the functions (Equation (8)) on a regular grid
over B. The grid was refined to capture all of the non-zero frequencies present in the functions. A grid
with one degree grid point spacing placed over B was found to satisfy this requirement, meaning that
all of the important frequencies were captured by the transform. The non-zero Fourier transforms for
elastic stiffness components are presented in Appendix A. Note that these transforms are orientation
invariant and valid for all HCP metals. The database contains only half of the transforms since
rPA
k “

rP˚
A
B´ k,

rPB
k “

rP˚
B
B´ k, and rPD

k “
rP˚

D
B´ k. Note that for example rPA

k is a compact way of writing

abcd
rPA
k “

rPA
k . The tilde indicates that the functions have been pre multiplied by sinΦ term. The term

will be clarified shortly. As can be seen in the database, the number of transforms varies for the different
stiffness components. Comparing the GSH Fourier coefficients presented in [7] for the same functions,
we note that the FFT representation has a few more terms but the FFTs are tremendously faster and
readily available.

3.3. First-Order Elastic Stiffness Bounds

The FFT representations in Equation (10) permit the efficient computation of the property bounds for
any given ODF from the HCP texture hull. The first-order upper and lower bounds of effective elastic
stiffness for the diagonal components are expressed as [12,18–20]:

´

S
´ 1

¯

abab
ď C˚abab ď Cabab (11)

and for the off-diagonal components, the bounds are expressed as:

maxpCabcd,
´

S
´ 1

¯

abcd
q ´

?
∆abab∆cdcd ď C˚abcd

ď minpCabcd,
´

S
´ 1

¯

abcd
q `

?
∆abab∆cdcd

(12a)

∆abcd “ Cabcd ´

´

S
´ 1

¯

abcd
(12b)

In Equations (11) and (12), no implicit summation on repeated indices is used (The Einstein indicial
notation of implicit summation on repeated indices is employed in this paper, except when explicitly
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noted otherwise). The bars on top of a field quantity denote the volume averaged value over constituent
crystals in a polycrystal:

´

S
´ 1

¯

abab
is the polycrystal compliance matrix with an inverse taken after

homogenization and Cabab is the polycrystal stiffness matrix. This paper is the first work to compute
off-diagonal term HCP property closures.

3.4. Homogenization of the Elastic Properties in Fourier Space

As mentioned in the previous section, the first-order homogenization theory requires calculations of
the volume average quantities. As an example, the upper bound for the components of the homogenized
elastic stiffness tensor can be expressed as the following (no implicit summation on repeated indices):

C “ Cabcd “
1
V

ş

V
Cabcd pxq dx “

ş

FZ3
f pgqCabcd pgq sinΦdφ1dΦdφ2 “ C12δabδcd`

C44 pδadδbc ` δacδbdq `
1
B

řB´ 1
k“0 rpC11 ´ C12 ´ 2C44q rP

A
k ` pC13 ´ C12q rP

B
k `

pC33 ´ C11qrP
D
k sFk

(13)

where V is the physical volume of a sample and x is a location in the sample. Alternatively, the volume
average functions A, B and D can be calculated by multiplication of the precomputed rPA

k , rPB
k , and rPD

k

with the ODF transforms Fk and their summation as: Aabcd “
1
B

řB´ 1
k“0

rPA
kFk, Babcd “

1
B

řB´ 1
k“0

rPB
kFk,

Dabcd “
1
B

řB´ 1
k“0

rPD
kFk. These quantities can be used in Equation (9) to calculate the homogenized

elastic stiffness tensor. Similar expressions exist for all tensors involved in Equations (11) and (12).
Note that we have exploited the orthogonal properties of the spectral representation in the last part of
the Equation (13). Since the regular grid is used in the summations in each direction incrementally
p∆φ1,∆Φ,∆φ2q, the sinΦ accounting for the distortion of the Bunge-Euler space must multiply either
f pgq or Cabcd pgq (Equation (13)). We have chosen to multiply the functions A, B and D by the sinΦ

term, therefore we have added tilde symbol to the property transforms.
Equation (13) can be used to calculate the volume average elastic stiffness as well as the elastic

stiffness of a single crystal. It should be noted that the number of calculations (multiplications and
summations) for stiffness components is the same for a single crystal and a polycrystal comprised of
any number of crystals in this spectral representation. The number of calculations is determined by
the number of non-zero transforms (Appendix A). Figure 2 shows contour plots of the C1111 pgq elastic
stiffness component over FZ for HCP metals calculated using Equations (6) and (13). The single crystal
elastic constants of Zn were used. It can be clearly seen that the results are identical, which validates the
FFT representation of the ODF-to-elastic stiffness relationship. The same checks were conducted for all
components of the local elastic stiffness tensor.
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Figure 2. Contour plots of the C1111 elastic stiffness component in the HCP fundamental
zone of the Bunge-Euler space for Zn: (a) computed using the non-zero FFTs (Equation
(13)) and (b) computed directly using Equation (6). The maximum difference between
corresponding locations in the two plots is of the order 10´6 GPa.

3.5. Computation of Property Closures for HCP Metals

The methodology used here for building first-order elastic stiffness closures starts with a consideration
of a set of points in the texture hull that correspond to “eigen textures” [66]. The set of eigen
textures is selected while ensuring an adequate coverage of the HCP FZ. The property bounds
(Equations (11) and (12)) are first evaluated using the FFT representation of the ODF-to-elastic stiffness
linkages (Equation (13)) for these eigen textures. A finite number of eigen textures corresponding to
the boundary of a given property closure of stiffness components was then selected. Subsequently, the
property combinations were evaluated for weighted combinations of these textures, taking one pair of
textures at a time. The weighted combinations of pairs of the selected textures were incremented by
a 0.1 weighted fraction i.e., from (0.1, 0.9) pair to (0.9, 0.1) pair, which resulted with nine weighted
combinations. As expected, these computations involving combinations of textures expand the property
closures. Next, a new set of textures corresponding to the new boundary of the expanded closure were
selected (this time these were a mixture of eigen textures and non-eigen textures) and the property
combinations corresponding to the weighted combinations of these were evaluated. This process was
repeated until the closure expansion saturated. The method of delineation of closures follows the
main ideas underlying genetic algorithms, where good solutions are pre-selected and used in further
calculations. This approach was applied successfully to delineate closures of plastic properties involving
uniform ductility and ultimate tensile strength in cubic metals in [15].

3.6. Atlases of Property Closures for HCP Metals

The FFT representation of the ODF-to-elastic stiffness bounds is used in this study to obtain the
first-order property closures, which identify the complete set of theoretically realizable combinations of
selected macroscale properties in a given material system through a consideration of the complete set
of textures (i.e., the texture hull). The shaded areas inside the closures represent the possible property
combinations of the selected elastic stiffness components that can be obtained according to the first-order
bounding theories for the particular material as a function of ODFs. We provide three examples of atlases
of property closures corresponding to selection of different pairs of effective elastic properties. Figure 3
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depicts examples of the property closures produced in this work using the FFT representations for a range
of HCP metals. This particular property combination of the effective modulus in unaxial strain and the
effective shear modulus in the sample play an important role in the design of components subjected
simultaneously to axial loads and twisting moments. The single crystal elastic constants for these
metals were taken from literature [67]. Comparison with the closures previously reported in [7], which
were computed using the GSH representations reveals excellent agreement. It should be noted that this
agreement occurs in spite of the fact that the previously computed closures assumed orthotropic sample
symmetry, whereas the computations reported here did not invoke any sample symmetry assumption.
This is because the elastic stiffness components involved in these two closures exhibit orthotropic sample
symmetry. Figure 4 depicts another set of closures for the same set of metals that involve the coupling
of the normal-shear components. When orthotropic sample symmetry is assumed, C1112 is zero. The
closures presented here in Figure 4 show that the values of C1112 can take a wide range, which can
play an important role in the macroscale mechanical response of components (note that these are often
ignored in practice by assuming an orthotropic sample symmetry that the material may not exhibit).

As a final comment, we note that the FFT framework developed here for the efficient calculation
of elastic properties can also be used to accelerate the calculations of the elasto-viscoplastic response
of polycrystalline HCP metals that is under development. This framework has been recently reported
for cubic metals in [68]. The implementation presented in [68] takes the advantage of calculations of
the elastic properties based on the spectral representation reported in [52]. For HCP, the components
of the local elastic stiffness tensor as a function of the crystal orientation can be calculated using
Equation (13) instead of Equation (6). Therefore, the elastic stiffness solutions obtained based on
the FFT representation can be used within the elasto-viscoplastic crystal plasticity constitutive laws
operating at every integration point within implicit finite elements [69–75].
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4. Conclusions

In this paper, we have extended the recently developed first-order ODF-to-elastic stiffness linkages
using FFTs for cubic metals to more computationally challenging HCP polycrystals. The benefit of
using FFTs to represent these linkages is the substantial reduction in the computational time involved
in the property calculations due to the use of fast and readily available FFT algorithms. First, we have
shown that it is possible to construct texture hulls using FFTs for HCP polycrystals, as was done earlier
for cubic polycrystals. Next, we have calculated elastic stiffness FFTs and presented the actual values
in Appendix A. Consistent with the GSH representation, we found that the inherently more anisotropic
HCP structure demands a larger number of FFTs than FFTs used for the cubic structure to represent
these properties. However, the use of FFT representations reduced the computational time involved in
producing the property closures due to the use of efficient FFT algorithms. Finally, we have successfully
computed elastic property closures for HCP metals without invoking any sample symmetry assumption.
To this end, the methodology presented here facilitated for the first time the delineation of the property
closures involving the normal–shear coupling stiffness coefficients.
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Appendix A

rPA
k1,k2,k3

k1 k2 k3 C1111 k1 k2 k3 C1112 k1 k2 k3 C1113

0 0 0 3.645 ˆ 107 + 0j 0 0 0 1.346 ˆ 10´3 + 0j 0 0 0 3.474 ˆ 10´4 + 0j
0 0 2 2.916 ˆ 106 ´ 8.017 ˆ 10´4j 0 0 2 ´1.024 ˆ 10´3 ´ 1.458 ˆ 106j 0 2 1 1.458 ˆ 106 ´ 1.752 ˆ 10´3j
0 0 4 2.187 ˆ 106 + 1.490 ˆ 10´3j 0 0 4 ´3.287 ˆ 10´4 ´ 2.187 ˆ 106j 0 2 3 1.458 ˆ 106 ´ 9.201 ˆ 10´4j
0 2 0 2.916 ˆ 106 ´ 8.017 ˆ 10´4j 0 2 4 5.437 ˆ 10´4 + 1.458 ˆ 106j 0 2 357 ´1.458 ˆ 106 + 8.970 ˆ 10´4j
0 2 4 ´1.458 ˆ 106 ´ 2.353 ˆ 10´4j 0 2 356 3.103 ˆ 10´4 ´ 1.458 ˆ 106j 0 2 359 ´1.458 ˆ 106 + 1.470 ˆ 10´3j

0 2 356 ´1.458 ˆ 106 ´ 1.324 ˆ 10´3j 0 4 2 5.819 ˆ 10´4 + 7.290 ˆ 105j 0 4 1 2.187 ˆ 106 ´ 3.252 ˆ 10´3j
0 4 0 2.187 ˆ 106 + 1.490 ˆ 10´3j 0 4 4 ´1.197 ˆ 10´3 ´ 3.645 ˆ 105j 0 4 3 ´7.290 ˆ 105 + 7.335 ˆ 10´4j
0 4 2 ´1.458 ˆ 106 ´ 2.353 ˆ 10´4j 0 4 356 ´3.065 ˆ 10´4 + 3.645 ˆ 105j 0 4 357 7.290 ˆ 105 + 1.229 ˆ 10´3j
0 4 4 3.645 ˆ 105 ´ 4.225 ˆ 10´4j 0 4 358 ´1.105 ˆ 10´3 ´ 7.290 ˆ 105j 0 4 359 ´2.187 ˆ 106 + 1.318 ˆ 10´3j

0 4 356 3.645 ˆ 105 ´ 2.071 ˆ 10´12j – – – –
0 4 358 ´1.458 ˆ 106 + 1.324 ˆ 10´3j – – – –
k1 k2 k3 C1122 k1 k2 k3 C1123 k1 k2 k3 C1133

0 0 0 4.374 ˆ 106 + 0j 0 0 0 ´8.664 ˆ 10´4 + 0j 0 0 0 5.832 ˆ 106 + 0j
0 0 4 ´2.187 ˆ 106 + 7.111 ˆ 10´4j 0 2 1 ´3.505 ˆ 10´3 + 1.458 ˆ 106j 0 0 2 ´2.916 ˆ 106 + 1.366 ˆ 10´5j
0 2 0 ´2.916 ˆ 106 + 3.868 ˆ 10´3j 0 2 3 2.036 ˆ 10´3 ´ 1.458 ˆ 106j 0 4 0 ´2.916 ˆ 106 + 3.465 ˆ 10´3j
0 2 4 1.458 ˆ 106 ´ 2.976 ˆ 10´3j 0 2 357 ´1.196 ˆ 10´3 ´ 1.458 ˆ 106j 0 4 2 1.458 ˆ 106 ´ 2.873 ˆ 10´3j

0 2 356 1.458 ˆ 106 ´ 2.763 ˆ 10´3j 0 2 359 2.458 ˆ 10´3 + 1.458 ˆ 106j 0 4 358 1.458 ˆ 106 ´ 2.842 ˆ 10´3j
0 4 0 7.290 ˆ 105 ´ 4.308 ˆ 10´3j 0 4 1 4.336 ˆ 10´3 ´ 7.290 ˆ 105j – –
0 4 4 ´3.645 ˆ 105 + 2.327 ˆ 10´3j 0 4 3 ´3.380 ˆ 10´3 + 7.290 ˆ 105j – –

0 4 356 ´3.645 ˆ 105 + 3.997 ˆ 10´3j 0 4 357 2.269 ˆ 10´4 + 7.290 ˆ 105j – –
– – 0 4 359 ´2.354 ˆ 10´3 ´ 7.290 ˆ 105j – –

k1 k2 k3 C1212 k1 k2 k3 C1312 k1 k2 k3 C1313

0 0 0 1.604 ˆ 107 + 0j 0 0 0 5.001 ˆ 10´4 + 0j 0 0 0 1.166 ˆ 107 + 0j
0 0 4 ´2.187 ˆ 106 + 1.968 ˆ 10´3j 0 2 1 ´2.863 ˆ 10´3 ´ 1.458 ˆ 106j 0 2 0 ´2.916 ˆ 106 + 1.449 ˆ 10´3j
0 2 0 2.916 ˆ 106 ´ 3.666 ˆ 10´4j 0 2 3 1.106 ˆ 10´4 ´ 1.458 ˆ 106j 0 2 2 ´1.458 ˆ 106 ´ 2.397 ˆ 10´3j
0 2 4 1.458 ˆ 106 ´ 3.097 ˆ 10´3j 0 2 357 ´1.002 ˆ 10´3 ´ 1.458 ˆ 106j 0 2 358 ´1.458 ˆ 106 ´ 2.518 ˆ 10´3j

0 2 356 1.458 ˆ 106 ´ 2.027 ˆ 10´3j 0 2 359 ´1.417 ˆ 10´3 ´ 1.458 ˆ 106j 0 4 0 ´2.916 ˆ 106 + 2.298 ˆ 10´4j
0 4 0 7.290 ˆ 105 + 3.823 ˆ 10´3j 0 4 1 ´7.437 ˆ 10´4 ´ 7.290 ˆ 105j 0 4 2 1.458 ˆ 106 + 1.402 ˆ 10´3j
0 4 4 ´3.645 ˆ 105 + 1.073 ˆ 10´3j 0 4 3 ´6.925 ˆ 10´4 + 7.290 ˆ 105j 0 4 358 1.458 ˆ 106 + 5.424 ˆ 10´4j

0 4 356 ´3.645 ˆ 105 + 3.916 ˆ 10´3j 0 4 357 ´3.324 ˆ 10´4 + 7.290 ˆ 105j – –
– – 0 4 359 ´8.323 ˆ 10´5 ´ 7.290 ˆ 105j – –

k1 k2 k3 C2212 k1 k2 k3 C2213 k1 k2 k3 C2222

0 0 0 ´2.227 ˆ 10´3 + 0j 0 0 0 1.855 ˆ 10´3 + 0j 0 0 0 3.645 ˆ 107 + 0j
0 0 2 ´8.014 ˆ 10´4 ´ 1.458 ˆ 106j 0 2 1 ´1.458 ˆ 106 + 2.242 ˆ 10´3j 0 0 2 ´2.916 ˆ 106 + 2.652 ˆ 10´3j
0 0 4 1.646 ˆ 10´3 + 2.187 ˆ 106j 0 2 3 ´1.458 ˆ 106 ´ 9.985 ˆ 10´4j 0 0 4 2.187 ˆ 106 ´ 2.554 ˆ 10´3j
0 2 4 ´1.432 ˆ 10´3 ´ 1.458 ˆ 106j 0 2 357 1.458 ˆ 106 ´ 9.966 ˆ 10´4j 0 2 0 2.916 ˆ 106 + 1.752 ˆ 10´3j

0 2 356 ´1.473 ˆ 10´3 + 1.458 ˆ 106j 0 2 359 1.458 ˆ 106 + 2.525 ˆ 10´3j 0 2 4 ´1.458 ˆ 106 ´ 8.290 ˆ 10´5j
0 4 2 1.079 ˆ 10´4 + 7.290 ˆ 105j 0 4 1 7.290 ˆ 105 ´ 9.776 ˆ 10´4j 0 2 356 ´1.458 ˆ 106 ´ 3.054 ˆ 10´3j
0 4 4 1.413 ˆ 10´3 + 3.645 ˆ 105j 0 4 3 7.290 ˆ 105 + 4.229 ˆ 10´3j 0 4 0 2.187 ˆ 106 ´ 7.525 ˆ 10´4j

0 4 356 2.592 ˆ 10´4 ´ 3.645 ˆ 105j 0 4 357 ´7.290 ˆ 105 ´ 1.011 ˆ 10´4j 0 4 2 1.458 ˆ 106 ´ 2.064 ˆ 10´3j
0 4 358 ´4.406 ˆ 10´4 ´ 7.290 ˆ 105j 0 4 359 ´7.290 ˆ 105 ´ 3.638 ˆ 10´3j 0 4 4 3.645 ˆ 105 ´ 2.895 ˆ 10´4j

– – – – 0 4 356 3.645 ˆ 105 + 8.692 ˆ 10´4j
– – – – 0 4 358 1.458 ˆ 106 + 1.344 ˆ 10´3j

k1 k2 k3 C2223 k1 k2 k3 C2233 k1 k2 k3 C2312

0 0 0 ´3.273 ˆ 10´4 + 0j 0 0 0 5.832 ˆ 106 + 0j 0 0 0 ´5.371 ˆ 10´4 + 0j
0 2 1 6.770 ˆ 10´5 ´ 1.458 ˆ 106j 0 0 2 2.916 ˆ 106 ´ 8.777 ˆ 10´4j 0 2 1 1.458 ˆ 106 ´ 9.363 ˆ 10´4j
0 2 3 1.475 ˆ 10´3 + 1.458 ˆ 106j 0 4 0 ´2.916 ˆ 106 + 4.489 ˆ 10´3j 0 2 3 ´1.458 ˆ 106 ´ 4.469 ˆ 10´4j

0 2 357 1.473 ˆ 10´3 + 1.458 ˆ 106j 0 4 2 ´1.458 ˆ 106 + 3.561 ˆ 10´3j 0 2 357 1.458 ˆ 106 ´ 3.113 ˆ 10´4j
0 2 359 ´1.745 ˆ 10´3 ´ 1.458 ˆ 106j 0 4 358 ´1.458 ˆ 106 + 2.759 ˆ 10´3j 0 2 359 ´1.458 ˆ 106 + 2.436 ˆ 10´3j
0 4 1 ´2.036 ˆ 10´3 ´ 2.187 ˆ 106j – – 0 4 1 7.290 ˆ 105 ´ 3.767 ˆ 10´4j
0 4 3 4.109 ˆ 10´4 ´ 7.290 ˆ 105j – – 0 4 3 7.290 ˆ 105 + 7.465 ˆ 10´4j

0 4 357 1.317 ˆ 10´4 ´ 7.290 ˆ 105j – – 0 4 357 ´7.290 ˆ 105 ´ 4.772 ˆ 10´4j
0 4 359 ´1.982 ˆ 10´3 ´ 2.187 ˆ 106j – – 0 4 359 ´7.290 ˆ 105 + 6.635 ˆ 10´4j
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k1 k2 k3 C2313 k1 k2 k3 C2323 k1 k2 k3 C3312

0 0 0 ´4.698 ˆ 10´4 + 0j 0 0 0 1.166 ˆ 107 + 0j 0 0 0 5.534 ˆ 10´4 + 0j
0 2 2 2.663 ˆ 10´3 + 1.458 ˆ 106j 0 2 0 ´2.916 ˆ 106 + 3.338 ˆ 10´3j 0 0 2 2.781 ˆ 10´4 + 2.916 ˆ 106j

0 2 358 ´1.665 ˆ 10´3 ´ 1.458 ˆ 106j 0 2 2 1.458 ˆ 106 + 2.699 ˆ 10´3j 0 4 2 ´6.452 ˆ 10´3 ´ 1.458 ˆ 106j
0 4 2 ´3.239 ˆ 10´3 ´ 1.458 ˆ 106j 0 2 358 1.458 ˆ 106 + 3.103 ˆ 10´3j 0 4 358 5.710 ˆ 10´3 + 1.458 ˆ 106j

0 4 358 2.674 ˆ 10´3 + 1.458 ˆ 106j 0 4 0 ´2.916 ˆ 106 + 1.859 ˆ 10´3j – –
– – 0 4 2 ´1.458 ˆ 106 + 6.743 ˆ 10´4j – –
– – 0 4 358 ´1.458 ˆ 106 ´ 9.184 ˆ 10´4j – –

k1 k2 k3 C3313 k1 k2 k3 C3323 k1 k2 k3 C3333

0 0 0 3.737 ˆ 10´4 + 0j 0 0 0 3.272 ˆ 10´4 + 0j 0 0 0 3.499 ˆ 107 + 0j
0 4 1 ´2.916 ˆ 106 + 1.377 ˆ 10´3j 0 4 1 2.203 ˆ 10´3 + 2.916 ˆ 106j 0 4 0 5.832 ˆ 106 + 2.951 ˆ 10´11j

0 4 359 2.916 ˆ 106 ´ 2.212 ˆ 10´3j 0 4 359 3.092 ˆ 10´4 + 2.916 ˆ 106j – –

rPB
k1,k2,k3

k1 k2 k3 C1111 k1 k2 k3 C1112 k1 k2 k3 C1113

0 0 0 1.021 ˆ 107 + 0j 0 0 0 ´1.346 ˆ 10´3 + 0j 0 0 0 ´3.474 ˆ 10´4 + 0j
0 0 2 ´2.916 ˆ 106 + 4.497 ˆ 10´4j 0 0 2 1.024 ˆ 10´3 + 1.458 ˆ 106j 0 2 1 ´1.458 ˆ 106 + 1.752 ˆ 10´3j
0 0 4 ´2.187 ˆ 106 ´ 3.121 ˆ 10´3j 0 0 4 3.287 ˆ 10´4 + 2.187 ˆ 106j 0 2 3 ´1.458 ˆ 106 + 9.201 ˆ 10´4j
0 2 0 ´2.916 ˆ 106 + 4.497 ˆ 10´4j 0 2 4 ´5.437 ˆ 10´4 ´ 1.458 ˆ 106j 0 2 357 1.458 ˆ 106 ´ 8.970 ˆ 10´4j
0 2 4 1.458 ˆ 106 + 1.246 ˆ 10´3j 0 2 356 ´3.103 ˆ 10´4 + 1.458 ˆ 106j 0 2 359 1.458 ˆ 106 ´ 1.470 ˆ 10´3j

0 2 356 1.458 ˆ 106 + 5.795 ˆ 10´4j 0 4 2 ´5.819 ˆ 10´4 ´ 7.290 ˆ 105j 0 4 1 ´2.187 ˆ 106 + 3.252 ˆ 10´3j
0 4 0 ´2.187 ˆ 106 ´ 3.121 ˆ 10´3j 0 4 4 1.197 ˆ 10´3 + 3.645 ˆ 105j 0 4 3 7.290 ˆ 105 ´ 7.335 ˆ 10´4j
0 4 2 1.458 ˆ 106 + 1.246 ˆ 10´3j 0 4 356 3.065 ˆ 10´4 ´ 3.645 ˆ 105j 0 4 357 ´7.290 ˆ 105 ´ 1.229 ˆ 10´3j
0 4 4 ´3.645 ˆ 105 ´ 3.397 ˆ 10´4j 0 4 358 1.105 ˆ 10´3 + 7.290 ˆ 105j 0 4 359 2.187 ˆ 106 ´ 1.318 ˆ 10´3j

0 4 356 ´3.645 ˆ 105 + 7.221 ˆ 10´12j – – – –
0 4 358 1.458 ˆ 106 ´ 5.795 ˆ 10´4j – – – –
k1 k2 k3 C1122 k1 k2 k3 C1123 k1 k2 k3 C1133

0 0 0 1.895 ˆ 107 + 0j 0 0 0 ´1.405 ˆ 10´3 + 0j 0 0 0 2.916 ˆ 107 + 0j
0 0 4 2.187 ˆ 106 + 2.054 ˆ 10´3j 0 2 1 3.890 ˆ 10´3 + 4.374 ˆ 106j 0 0 2 ´2.916 ˆ 106 + 2.518 ˆ 10´3j
0 2 0 ´8.748 ˆ 106 ´ 5.686 ˆ 10´3j 0 2 3 1.772 ˆ 10´3 + 1.458 ˆ 106j 0 2 0 5.832 ˆ 106 ´ 5.718 ˆ 10´4j
0 2 4 ´1.458 ˆ 106 ´ 1.370 ˆ 10´4j 0 2 357 1.828 ˆ 10´3 + 1.458 ˆ 106j 0 2 2 2.916 ˆ 106 ´ 3.981 ˆ 10´3j

0 2 356 ´1.458 ˆ 106 + 2.013 ˆ 10´3j 0 2 359 1.475 ˆ 10´3 + 4.374 ˆ 106j 0 2 358 2.916 ˆ 106 + 4.465 ˆ 10´4j
0 4 0 ´7.290 ˆ 105 ´ 1.318 ˆ 10´2j 0 4 1 1.098 ˆ 10´3 + 7.290 ˆ 105j 0 4 0 2.916 ˆ 106 ´ 5.226 ˆ 10´4j
0 4 4 3.645 ˆ 105 + 5.098 ˆ 10´3j 0 4 3 3.059 ˆ 10´3 ´ 7.290 ˆ 105j 0 4 2 ´1.458 ˆ 106 + 9.562 ˆ 10´3j

0 4 356 3.645 ˆ 105 + 4.815 ˆ 10´3j 0 4 357 ´1.042 ˆ 10´3 ´ 7.290 ˆ 105j 0 4 358 ´1.458 ˆ 106 + 7.009 ˆ 10´3j
– – 0 4 359 ´8.954 ˆ 10´4 + 7.290 ˆ 105j – –

k1 k2 k3 C1212 k1 k2 k3 C1312 k1 k2 k3 C1313

0 0 0 ´4.374 ˆ 106 + 0j 0 0 0 8.664 ˆ 10´4 + 0j 0 0 0 ´5.832 ˆ 106 + 0j
0 0 4 2.187 ˆ 106 ´ 7.102 ˆ 10´4j 0 2 1 3.505 ˆ 10´3 ´ 1.458 ˆ 106j 0 0 2 2.916 ˆ 106 ´ 1.366 ˆ 10´5j
0 2 0 2.916 ˆ 106 ´ 3.869 ˆ 10´3j 0 2 3 ´2.036 ˆ 10´3 + 1.458 ˆ 106j 0 4 0 2.916 ˆ 106 ´ 3.465 ˆ 10´3j
0 2 4 ´1.458 ˆ 106 + 2.976 ˆ 10´3j 0 2 357 1.196 ˆ 10´3 + 1.458 ˆ 106j 0 4 2 ´1.458 ˆ 106 + 2.873 ˆ 10´3j

0 2 356 ´1.458 ˆ 106 + 2.764 ˆ 10´3j 0 2 359 ´2.458 ˆ 10´3 ´ 1.458 ˆ 106j 0 4 358 ´1.458 ˆ 106 + 2.842 ˆ 10´3j
0 4 0 ´7.290 ˆ 105 + 4.309 ˆ 10´3j 0 4 1 ´4.336 ˆ 10´3 + 7.290 ˆ 105j – –
0 4 4 3.645 ˆ 105 ´ 2.328 ˆ 10´3j 0 4 3 3.380 ˆ 10´3 ´ 7.290 ˆ 105j – –

0 4 356 3.645 ˆ 105 ´ 3.997 ˆ 10´3j 0 4 357 ´2.269 ˆ 10´4 ´ 7.290 ˆ 105j – –
– – 0 4 359 2.354 ˆ 10´3 + 7.290 ˆ 105j – –

k1 k2 k3 C2212 k1 k2 k3 C2213 k1 k2 k3 C2222

0 0 0 2.227 ˆ 10´3 + 0j 0 0 0 1.553 ˆ 10´3 + 0j 0 0 0 1.021 ˆ 107 + 0j
0 0 2 8.014 ˆ 10´4 + 1.458 ˆ 106j 0 2 1 ´4.374 ˆ 106 ´ 8.811 ˆ 10´5j 0 0 2 2.916 ˆ 106 ´ 2.431 ˆ 10´3j
0 0 4 ´1.646 ˆ 10´3 ´ 2.187 ˆ 106j 0 2 3 1.458 ˆ 106 ´ 2.859 ˆ 10´3j 0 0 4 ´2.187 ˆ 106 + 2.792 ˆ 10´3j
0 2 4 1.432 ˆ 10´3 + 1.458 ˆ 106j 0 2 357 ´1.458 ˆ 106 + 6.060 ˆ 10´4j 0 2 0 ´2.916 ˆ 106 ´ 2.517 ˆ 10´3j

0 2 356 1.473 ˆ 10´3 ´ 1.458 ˆ 106j 0 2 359 4.374 ˆ 106 + 1.237 ˆ 10´4j 0 2 4 1.458 ˆ 106 + 1.090 ˆ 10´3j
0 4 2 ´1.079 ˆ 10´4 ´ 7.290 ˆ 105j 0 4 1 ´7.290 ˆ 105 ´ 6.559 ˆ 10´4j 0 2 356 1.458 ˆ 106 + 1.432 ˆ 10´3j
0 4 4 ´1.413 ˆ 10´3 ´ 3.645 ˆ 105j 0 4 3 ´7.290 ˆ 105 ´ 3.227 ˆ 10´3j 0 4 0 ´2.187 ˆ 106 ´ 5.437 ˆ 10´4j

0 4 356 ´2.592 ˆ 10´4 + 3.645 ˆ 105j 0 4 357 7.290 ˆ 105 + 2.268 ˆ 10´4j 0 4 2 ´1.458 ˆ 106 + 2.247 ˆ 10´3j
0 4 358 4.406 ˆ 10´4 + 7.290 ˆ 105j 0 4 359 7.290 ˆ 105 + 3.400 ˆ 10´3j 0 4 4 ´3.645 ˆ 105 ´ 1.823 ˆ 10´3j
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k1 k2 k3 C2212 k1 k2 k3 C2213 k1 k2 k3 C2222

– – – – 0 4 356 ´3.645 ˆ 105 + 1.969 ˆ 10´4j
– – – – 0 4 358 ´1.458 ˆ 106 ´ 3.514 ˆ 10´3j

k1 k2 k3 C2223 k1 k2 k3 C2233 k1 k2 k3 C2312

0 0 0 3.273 ˆ 10´4 + 0j 0 0 0 2.916 ˆ 107 + 0j 0 0 0 ´1.855 ˆ 10´3 + 0j
0 2 1 ´6.770 ˆ 10´5 + 1.458 ˆ 106j 0 0 2 2.916 ˆ 106 + 2.189 ˆ 10´3j 0 2 1 1.458 ˆ 106 ´ 2.242 ˆ 10´3j
0 2 3 ´1.475 ˆ 10´3 ´ 1.458 ˆ 106j 0 2 0 5.832 ˆ 106 + 3.827 ˆ 10´4j 0 2 3 1.458 ˆ 106 + 9.985 ˆ 10´4j

0 2 357 ´1.473 ˆ 10´3 ´ 1.458 ˆ 106j 0 2 2 ´2.916 ˆ 106 ´ 8.557 ˆ 10´4j 0 2 357 ´1.458 ˆ 106 + 9.966 ˆ 10´4j
0 2 359 1.745 ˆ 10´3 + 1.458 ˆ 106j 0 2 358 ´2.916 ˆ 106 + 2.756 ˆ 10´3j 0 2 359 ´1.458 ˆ 106 ´ 2.525 ˆ 10´3j
0 4 1 2.036 ˆ 10´3 + 2.187 ˆ 106j 0 4 0 2.916 ˆ 106 ´ 1.242 ˆ 10´3j 0 4 1 ´7.290 ˆ 105 + 9.776 ˆ 10´4j
0 4 3 ´4.109 ˆ 10´4 + 7.290 ˆ 105j 0 4 2 1.458 ˆ 106 ´ 5.018 ˆ 10´3j 0 4 3 ´7.290 ˆ 105 ´ 4.229 ˆ 10´3j

0 4 357 ´1.317 ˆ 10´4 + 7.290 ˆ 105j 0 4 358 1.458 ˆ 106 ´ 7.378 ˆ 10´3j 0 4 357 7.290 ˆ 105 + 1.011 ˆ 10´4j
0 4 359 1.982 ˆ 10´3 + 2.187 ˆ 106j – – 0 4 359 7.290 ˆ 105 + 3.638 ˆ 10´3j
k1 k2 k3 C2313 k1 k2 k3 C2323 k1 k2 k3 C3312

0 0 0 ´5.534 ˆ 10´4 + 0j 0 0 0 ´5.832 ˆ 106 + 0j 0 0 0 ´1.994 ˆ 10´3 + 0j
0 0 2 ´2.781 ˆ 10´4 ´ 2.916 ˆ 106j 0 0 2 ´2.916 ˆ 106 + 8.777 ˆ 10´4j 0 0 2 2.216 ˆ 10´3 + 2.916 ˆ 106j
0 4 2 6.452 ˆ 10´3 + 1.458 ˆ 106j 0 4 0 2.916 ˆ 106 ´ 4.489 ˆ 10´3j 0 2 2 ´3.090 ˆ 10´3 ´ 2.916 ˆ 106j

0 4 358 ´5.710 ˆ 10´3 ´ 1.458 ˆ 106j 0 4 2 1.458 ˆ 106 ´ 3.561 ˆ 10´3j 0 2 358 ´1.514 ˆ 10´3 + 2.916 ˆ 106j
– – 0 4 358 1.458 ˆ 106 ´ 2.759 ˆ 10´3j 0 4 2 3.003 ˆ 10´3 + 1.458 ˆ 106j
– – – – 0 4 358 ´1.255 ˆ 10´4 ´ 1.458 ˆ 106j

k1 k2 k3 C3313 k1 k2 k3 C3323 k1 k2 k3 C3333

0 0 0 ´3.737 ˆ 10´4 + 0j 0 0 0 ´3.272 ˆ 10´4 + 0j 0 0 0 1.166 ˆ 107 + 0j
0 4 1 2.916 ˆ 106 ´ 1.377 ˆ 10´3j 0 4 1 ´2.203 ˆ 10´3 ´ 2.916 ˆ 106j 0 4 0 ´5.832 ˆ 106 ´ 1.367 ˆ 10´3j

0 4 359 ´2.916 ˆ 106 + 2.212 ˆ 10´3j 0 4 359 ´3.092 ˆ 10´4 ´ 2.916 ˆ 106j – –

rPD
k1,k2,k3

k1 k2 k3 C1111 k1 k2 k3 C1112 k1 k2 k3 C1113

0 0 0 6.561 ˆ 106 + 0j 0 0 0 3.823 ˆ 10´3 + 0j 0 0 0 ´1.282 ˆ 10´3 + 0j
0 0 2 ´4.374 ˆ 106 + 1.160 ˆ 10´3j 0 0 2 ´2.355 ˆ 10´3 + 2.187 ˆ 106j 0 2 1 ´2.187 ˆ 106 + 1.105 ˆ 10´3j
0 0 4 1.093 ˆ 106 ´ 2.072 ˆ 10´3j 0 0 4 1.071 ˆ 10´3 ´ 1.093 ˆ 106j 0 2 3 7.290 ˆ 105 ´ 2.142 ˆ 10´3j
0 2 0 ´4.374 ˆ 106 + 1.160 ˆ 10´3j 0 2 2 6.666 ˆ 10´4 ´ 1.458 ˆ 106j 0 2 357 ´7.290 ˆ 105 ´ 2.591 ˆ 10´3j
0 2 2 2.916 ˆ 106 ´ 1.262 ˆ 10´3j 0 2 4 3.187 ˆ 10´4 + 7.290 ˆ 105j 0 2 359 2.187 ˆ 106 + 1.453 ˆ 10´3j
0 2 4 ´7.290 ˆ 105 + 1.499 ˆ 10´3j 0 2 356 ´1.668 ˆ 10´3 ´ 7.290 ˆ 105j 0 4 1 1.093 ˆ 106 ´ 1.071 ˆ 10´3j

0 2 356 ´7.290 ˆ 105 ´ 6.593 ˆ 10´4j 0 2 358 2.999 ˆ 10´3 + 1.458 ˆ 106j 0 4 3 ´3.645 ˆ 105 + 2.670 ˆ 10´3j
0 2 358 2.916 ˆ 106 ´ 2.659 ˆ 10´10j 0 4 2 ´3.242 ˆ 10´4 + 3.645 ˆ 105j 0 4 357 3.645 ˆ 105 + 2.440 ˆ 10´3j
0 4 0 1.093 ˆ 106 ´ 2.072 ˆ 10´3j 0 4 4 ´6.012 ˆ 10´4 ´ 1.823 ˆ 105j 0 4 359 ´1.093 ˆ 106 ´ 1.311 ˆ 10´3j
0 4 2 ´7.290 ˆ 105 + 1.499 ˆ 10´3j 0 4 356 8.978 ˆ 10´4 + 1.823 ˆ 105j – –
0 4 4 1.823 ˆ 105 + 9.732 ˆ 10´5j 0 4 358 ´1.676 ˆ 10´3 ´ 3.645 ˆ 105j – –

0 4 356 1.823 ˆ 105 + 9.683 ˆ 10´12j – – – –
0 4 358 ´7.290 ˆ 105 + 6.593 ˆ 10´4j – – – –
k1 k2 k3 C1122 k1 k2 k3 C1123 k1 k2 k3 C1133

0 0 0 2.187 ˆ 106 + 0j 0 0 0 ´2.897 ˆ 10´4 + 0j 0 0 0 2.916 ˆ 106 + 0j
0 0 4 ´1.094 ˆ 106 + 8.084 ˆ 10´4j 0 2 1 ´4.025 ˆ 10´4 + 7.290 ˆ 105j 0 0 2 ´1.458 ˆ 106 ´ 1.382 ˆ 10´4j
0 2 0 ´1.458 ˆ 106 + 1.200 ˆ 10´3j 0 2 3 2.409 ˆ 10´4 ´ 7.290 ˆ 105j 0 4 0 ´1.458 ˆ 106 ´ 6.165 ˆ 10´6j
0 2 4 7.290 ˆ 105 ´ 1.126 ˆ 10´3j 0 2 357 ´4.364 ˆ 10´4 ´ 7.290 ˆ 105j 0 4 2 7.290 ˆ 105 + 4.241 ˆ 10´4j

0 2 356 7.290 ˆ 105 ´ 1.900 ˆ 10´4j 0 2 359 1.795 ˆ 10´4 + 7.290 ˆ 105j 0 4 358 7.290 ˆ 105 + 1.654 ˆ 10´4j
0 4 0 3.645 ˆ 105 ´ 8.533 ˆ 10´4j 0 4 1 8.402 ˆ 10´4 ´ 3.645 ˆ 105j – –
0 4 4 ´1.823 ˆ 105 + 2.970 ˆ 10´4j 0 4 3 ´7.023 ˆ 10´4 + 3.645 ˆ 105j – –

0 4 356 ´1.823 ˆ 105 + 5.990 ˆ 10´4j 0 4 357 ´1.036 ˆ 10´3 + 3.645 ˆ 105j – –
– – 0 4 359 4.759 ˆ 10´4 ´ 3.645 ˆ 105j – –

k1 k2 k3 C1212 k1 k2 k3 C1312 k1 k2 k3 C1313

0 0 0 2.187 ˆ 106 + 0j 0 0 0 ´2.897 ˆ 10´4 + 0j 0 0 0 2.916 ˆ 106 + 0j
0 0 4 ´1.094 ˆ 106 + 8.084 ˆ 10´4j 0 2 1 ´4.025 ˆ 10´4 + 7.290 ˆ 105j 0 0 2 ´1.458 ˆ 106 ´ 1.382 ˆ 10´4j
0 2 0 ´1.458 ˆ 106 + 1.200 ˆ 10´3j 0 2 3 2.409 ˆ 10´4 ´ 7.290 ˆ 105j 0 4 0 ´1.458 ˆ 106 ´ 6.165 ˆ 10´6j
0 2 4 7.290 ˆ 105 ´ 1.126 ˆ 10´3j 0 2 357 ´4.364 ˆ 10´4 ´ 7.290 ˆ 105j 0 4 2 7.290 ˆ 105 + 4.241 ˆ 10´4j

0 2 356 7.290 ˆ 105 ´ 1.900 ˆ 10´4j 0 2 359 1.795 ˆ 10´4 + 7.290 ˆ 105j 0 4 358 7.290 ˆ 105 + 1.654 ˆ 10´4j
0 4 0 3.645 ˆ 105 ´ 8.533 ˆ 10´4j 0 4 1 8.402 ˆ 10´4 ´ 3.645 ˆ 105j – –
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k1 k2 k3 C1212 k1 k2 k3 C1312 k1 k2 k3 C1313

0 4 4 ´1.823 ˆ 105 + 2.970 ˆ 10´4j 0 4 3 ´7.023 ˆ 10´4 + 3.645 ˆ 105j – –
0 4 356 ´1.823 ˆ 105 + 5.990 ˆ 10´4j 0 4 357 ´1.036 ˆ 10´3 + 3.645 ˆ 105j – –

– – 0 4 359 4.759 ˆ 10´4 ´ 3.645 ˆ 105j – –
k1 k2 k3 C2212 k1 k2 k3 C2213 k1 k2 k3 C2222

0 0 0 2.792 ˆ 10´3 + 0j 0 0 0 3.074 ˆ 10´5 + 0j 0 0 0 6.561 ˆ 106 + 0j
0 0 2 2.951 ˆ 10´3 + 2.187 ˆ 106j 0 2 1 ´7.290 ˆ 105 + 2.330 ˆ 10´4j 0 0 2 4.374 ˆ 106 + 7.014 ˆ 10´4j
0 0 4 2.232 ˆ 10´3 + 1.093 ˆ 106j 0 2 3 ´7.290 ˆ 105 + 5.117 ˆ 10´4j 0 0 4 1.093 ˆ 106 + 1.030 ˆ 10´3j
0 2 2 ´3.103 ˆ 10´3 ´ 1.458 ˆ 106j 0 2 357 7.290 ˆ 105 + 5.010 ˆ 10´4j 0 2 0 ´4.374 ˆ 106 + 9.433 ˆ 10´4j
0 2 4 ´2.957 ˆ 10´3 ´ 7.290 ˆ 105j 0 2 359 7.290 ˆ 105 + 5.058 ˆ 10´4j 0 2 2 ´2.916 ˆ 106 + 1.423 ˆ 10´4j

0 2 356 ´5.481 ˆ 10´4 + 7.290 ˆ 105j 0 4 1 3.645 ˆ 105 ´ 1.666 ˆ 10´4j 0 2 4 ´7.290 ˆ 105 ´ 1.449 ˆ 10´4j
0 2 358 ´1.477 ˆ 10´3 + 1.458 ˆ 106j 0 4 3 3.645 ˆ 105 + 1.777 ˆ 10´4j 0 2 356 ´7.290 ˆ 105 + 8.615 ˆ 10´4j
0 4 2 1.298 ˆ 10´3 + 3.645 ˆ 105j 0 4 357 ´3.645 ˆ 105 ´ 3.247 ˆ 10´4j 0 2 358 ´2.916 ˆ 106 + 1.174 ˆ 10´3j
0 4 4 1.733 ˆ 10´3 + 1.823 ˆ 105j 0 4 359 ´3.645 ˆ 105 ´ 1.046 ˆ 10´3j 0 4 0 1.093 ˆ 106 ´ 2.872 ˆ 10´3j

0 4 356 2.726 ˆ 10´4 ´ 1.823 ˆ 105j – – 0 4 2 7.290 ˆ 105 ´ 1.485 ˆ 10´3j
0 4 358 9.600 ˆ 10´4 ´ 3.645 ˆ 105j – – 0 4 4 1.823 ˆ 105 ´ 3.610 ˆ 10´4j

– – – – 0 4 356 1.823 ˆ 105 + 5.363 ˆ 10´4j
– – – – 0 4 358 7.290 ˆ 105 ´ 2.104 ˆ 10´3j

k1 k2 k3 C2223 k1 k2 k3 C2233 k1 k2 k3 C2312

0 0 0 1.254 ˆ 10´3 + 0j 0 0 0 2.916 ˆ 106 + 0j 0 0 0 3.074 ˆ 10´5 + 0j
0 2 1 ´1.485 ˆ 10´3 + 2.187 ˆ 106j 0 0 2 1.458 ˆ 106 ´ 4.806 ˆ 10´4j 0 2 1 ´7.290 ˆ 105 + 2.330 ˆ 10´4j
0 2 3 ´2.290 ˆ 10´3 + 7.290 ˆ 105j 0 4 0 ´1.458 ˆ 106 + 1.795 ˆ 10´4j 0 2 3 ´7.290 ˆ 105 + 5.117 ˆ 10´4j

0 2 357 1.152 ˆ 10´3 + 7.290 ˆ 105j 0 4 2 ´7.290 ˆ 105 + 2.234 ˆ 10´4j 0 2 357 7.290 ˆ 105 + 5.010 ˆ 10´4j
0 2 359 3.268 ˆ 10´4 + 2.187 ˆ 106j 0 4 358 ´7.290 ˆ 105 ´ 4.228 ˆ 10´4j 0 2 359 7.290 ˆ 105 + 5.058 ˆ 10´4j

0 4 1 6.655 ˆ 10´4 ´ 1.093 ˆ 106j – – 0 4 1 3.645 ˆ 105 ´ 1.666 ˆ 10´4j
0 4 3 1.517 ˆ 10´3 ´ 3.645 ˆ 105j – – 0 4 3 3.645 ˆ 105 + 1.777 ˆ 10´4j

0 4 357 ´1.949 ˆ 10´3 ´ 3.645 ˆ 105j – – 0 4 357 ´3.645 ˆ 105 ´ 3.247 ˆ 10´4j
0 4 359 ´8.841 ˆ 10´4 ´ 1.093 ˆ 106j – – 0 4 359 ´3.645 ˆ 105 ´ 1.046 ˆ 10´3j
k1 k2 k3 C2313 k1 k2 k3 C2323 k1 k2 k3 C3312

0 0 0 ´1.640 ˆ 10´3 + 0j 0 0 0 2.916 ˆ 106 + 0j 0 0 0 ´1.640 ˆ 10´3 + 0j
0 0 2 1.228 ˆ 10´3 + 1.458 ˆ 106j 0 0 2 1.458 ˆ 106 ´ 4.806 ˆ 10´4j 0 0 2 1.228 ˆ 10´3 + 1.458 ˆ 106j
0 4 2 ´1.516 ˆ 10´3 ´ 7.290 ˆ 105j 0 4 0 ´1.458 ˆ 106 + 1.795 ˆ 10´4j 0 4 2 ´1.516 ˆ 10´3 ´ 7.290 ˆ 105j

0 4 358 ´4.549 ˆ 10´5 + 7.290 ˆ 105j 0 4 2 ´7.290 ˆ 105 + 2.234 ˆ 10´4j 0 4 358 ´4.549 ˆ 10´5 + 7.290 ˆ 105j
– – 0 4 358 ´7.290 ˆ 105 ´ 4.228 ˆ 10´4j – –

k1 k2 k3 C3313 k1 k2 k3 C3323 k1 k2 k3 C3333

0 0 0 1.518 ˆ 10´3 + 0j 0 0 0 5.058 ˆ 10´4 + 0j 0 0 0 1.750 ˆ 107 + 0j
0 2 1 ´2.916 ˆ 106 + 1.574 ˆ 10´3j 0 2 1 1.420 ˆ 10´3 + 2.916 ˆ 106j 0 2 0 1.166 ˆ 107 + 1.264 ˆ 10´1j

0 2 359 2.916 ˆ 106 ´ 2.529 ˆ 10´3j 0 2 359 1.340 ˆ 10´3 + 2.916 ˆ 106j 0 4 0 2.916 ˆ 106 + 5.968 ˆ 10´2j
0 4 1 ´1.458 ˆ 106 ´ 1.493 ˆ 10´3j 0 4 1 ´9.979 ˆ 10´4 + 1.458 ˆ 106j – –

0 4 359 1.458 ˆ 106 + 2.746 ˆ 10´4j 0 4 359 ´1.115 ˆ 10´3 + 1.458 ˆ 106j – –
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